Developing NICU Competencies

Just a few thoughts. Those developing the NICU competency will benefit from a period of reflective thinking to avoid the tendency to look for something already done or a cookbook, though guidelines can clearly guide and inform our own key learnings and formalized competencies. My dear friend and SLP colleague, Bob Beecher, from Children’s Hospital of Wisconsin used to say: “Cookbooks are made for cooking not for eating…use them wisely.”

SLPs mentoring new colleagues can develop very meaningful mentorship plans and identify objective SLP clinical skills for “check off” through careful reflection and application of current literature. This includes drawing from their own mentorship in the past (what worked, what was missing), or if you were not fortunate to have a mentor and came from the ground up alone, like I did in 1985 – what you now know is essential). Consider the current mentorship process in place (and feedback from recent staff mentored). Compile current literature that is essential as a foundation for NICU practice. Throughout the mentoring, it is critical to reflect that being part of an NICU is a journey, not a destination. Both the NICU’s evolution from a medical and technology perspective, as well as our own need to continue learning and growing in this rapidly changing clinical environment, are essential to an NICU practice that thrives and does so with respect and professional integrity.

Focus on providing the mentee with guided participation with and then assessing objectively (while supervised) their competency related to verbalizing and/or demonstrating the underpinnings of NICU practice during both evaluations and treatments. Even today these are rarely discussed in graduate school), and include: neuroprotection, medical co-morbdities and current technologies and their typical impact on feeding/swallowing, developmental progression of the dynamic systems (postural , state, oral-sensory-motor, respiratory, GI) that underlie feeding/swallowing for sick term infants versus preterm infants, guidelines for referral to ST (who, when, why, how to advocate), readiness factors for PO feeding and how SLP can support the progression to PO feeding (as co-morbidities permit), parameters for physiologic stability and indications of decompensation as well as how to avert and/or respond, the components of evaluation and completing a differential utilizing a wide range of data, explaining one’s differential to others (MD versus RN versus the family), instrumental assessment of swallowing physiology (why, when, how, potential intervention strategies and their benefits/risks), documenting to assist the team via your impression and plan versus only checking off boxes, strategies to support safety and their evidence-base (co-regulated pacing, resting, positioning, swaddling, state modulation, nipple selection), infant communication (signs of stress versus stability, signs of disengagement versus engagement), NICU equipment (what, why, application to SLP practice, progression of respiratory support, lines and their risks), team relationships (learning from other team members, bringing the evidence-base, difficult but respectful conversations, controversies due to the emerging evidence-base, supporting families), breastfeeding (physiology and relationship to bottle feeding, how to support as an SLP), common medications and potential impact of PO feeding. I am sure I am leaving something out but this is hopefully a start.

The depth and complexity of our work in the NICU, and the potential for these often fragile infants to decompensate, demand that both mentorship and competency assessment be carefully structured and supported. Our profession and our families deserve no less.

I hope this is helpful.
Catherine

PO Feeding on NCPAP and/or HFNC: The Dilemma

This is a practice dilemma for all NICU SLPs. The pressure to get infants out of the NICU often drives care decisions, especially when it comes to PO feeding.

Many neonatologists incorrectly assume that there is a window within which our preterms must “experience” PO feeding or they will “miss that critical window and never learn”. So, despite co-morbidities and often respiratory needs that are paramount, infants are being asked to feed. That well-intentioned paradigm is based on writings from Gesell back in the 60s that talked about a “critical window” for learning to eat. Those times were different in many ways as was the population being described. Early intervention now in NICUs to support readiness, neonatal care that is neuro-protective and promotes positive overcomes, and recognition of safety issues inherent in the complex task of PO feeding even when weaned from CPAP and HFNC clearly call for reconsideration of that paradigm, which, perhaps to a large part, underlies the thinking that leads to “pushing PO” and orders to PO on CPAP and HFNC. Many of our former preterms do indeed learn to feed orally at later ages, once weaned, and from my experience do so with much less stress and much more safely.

Advocating for safety for these infants is a critical one for SLPs in the NICU and PICU. Current NICU technology has advanced to the point that more infants are surviving and yet many are requiring extended periods of CPAP and HFNC. Many extremely preterm infants in our NICU with CLD at post-term (41 weeks PMA +) remain dependent on CPAP or HFNC. MY NICU team has had good collaborative conversations about the benefits of ST being involved to maintain a positive oral-sensory environment, promoting the oral-sensory-motor components that are the underpinnings for future PO feeding, beginning early to foreshadow for parents the swallowing, breathing and postural skills needed, and helping families also support those components, versus attempting PO feeding when the infant clearly is struggling with respiratory stability. Clearly, medical co-morbidities predispose an infant in the NICU to PO feeding problems. Multiple papers have studied that. Those infants with the greatest respiratory comorbidities, often those born < 28 weeks’ gestation and BW < 1000 grams, are most likely to require CPAP and/or HFNC at those post-menstrual ages when PO feeding is often attempted. Sick newborns may also present similar issues, secondary to their co-morbidities.

If the infant has such respiratory needs that he requires CPAP, or a HFNC, one must ask if PO feeding is really a priority for that infant at that time. The ability to reconfigure the pharynx from a respiratory tract and back to an alimentary tract with precise timing and coordination surrounding each swallow is a concern. When we look objectively in radiology during an instrumental assessment of swallowing physiology, even infants with CLD stable on RA have altered or impaired swallowing physiology as a direct result of their CLD. The bolus mis-direction and resulting aspiration we often observe is typically silent. In the adult population in the most recent information I have seen (Garon et al, 2009 Journal of Neuroscience Nursing) reported that of 2000 adults studied with a variety of co-morbid conditions, including COPD, 54.5% of those who aspirated did so silently. The data I have collected thus far for NICU infants suggests strongly to me that even the data from Arvedson et al in 1994 likely underestimated the tendency for infants to silently aspirate. In addition, her study population was not only less involved from a respiratory perspective back in 1994 than the population we see today, but it also was a population composed of not just infants. The need for an “urgent breath” often can predispose an infant with increased work of breathing to silently mis-direct the bolus into the airway during the swallow. The ability of the infant to close the glottis against the driving force of the respiratory support, while breathing with increased effort or with an increased respiratory rate, which effectively creates air hunger, and yet still maintain glottic closure throughout the duration of the swallow, would likely be precarious. Given the infant’s likelihood of baseline tachypnea and increased WOB, the dynamic adjustments of the airway surrounding the swallow are likely to be disrupted, and create uncoupling of swallowing and breathing. Without objective data on the impact of CPAP or HFNC on swallowing physiology we cannot conclude that feeding under these conditions is “safe”. Indeed, infants for whom we do not necessarily capture aspiration during a dynamic swallow study may indeed show alterations in swallowing physiology that may indeed predispose them to aspiration under “the right conditions” during PO feeding (changes in nipple flow, changes in position, changes in respiratory support for example) so it isn’t even just about aspiration but the potential impact of CPAP and HFNC on swallowing physiology. The fact that the infants “eat” and “are fed” and “transferred volume” does not equate to “safe feeding”.

We must of course consider the physiologic stress likely to occur when the infant experiences “feeding” when they still require NCPAP and or HFNC. It is highly possible the stress of trying to breathe and coordinate a swallow may lay down neural pathways that move the infant away from wanting to eat, by wiring those sensory-motor pathways that lead to current and/or future maladaptive feeding behaviors. We know that studies looking at stress in preterms have shown an association with adverse changes in brain structure on MRIs.

In the NICU seminars I teach, this body of evidence and our dilemma are always part of our problem-solving discussions. I am fortunate after 32 years in the NICU to be part of a team that is looking beyond “getting them to eat” and looking to partner with ST to guide practice while the evidence-base is emerging. NICU SLPs are in a key role to dialogue, problem-solve and focus on safety and neuroprotection as essential part of this practice issue which confronts every neonatal team.

Jim Coyle has said: “There is one rule of thumb: there is no single parameter that qualifies or disqualifies a patient for anything or that confirms or refutes risk in and of itself. It is the combination of parameters that the clinician uses to estimate risk and to form a diagnostic impression and complete a differential. That is what we teach students and trained clinicians should be emphasizing. Grab your water bottle and go for a 2-3-mile run. After 15 minutes when at your aerobic steady state and RR is up, try to take a drink of water and observe what you need to do to orchestrate the whole thing. Yet you are healthy and mature and not recovering from respiratory issues. Very illuminating.”

The dialogue needs to continue and we need measures of oral feeding that go beyond intake, and methods of assessment that capture critical variables, including objective assessment of physiology.

I hope this is helpful.

Merry Christmas, everybody!

Catherine

Esophageal Atresia and Tracheoesophageal Fistula Repairs: Feeding/Swallowing

Esophageal Atresia and Tracheoesophageal Fistula Repairs: Feeding/Swallowing

ESPGHAN-NASPGHAN Guidelines for the Evaluation and Treatment

This is an excellent summary of recent research and current perspectives on management from leading GI physicians worldwide. Infants and children with EA or TEF have complex co-morbidities, among them airway, GI, and respiratory that can result in an impairment or alteration in swallowing physiology. Although they are at high risk for vocal cord paralysis post-op that can lead to aspiration, they also frequently present with esophageal swallowing problems that may result in compensations along the swallow pathway that also predispose them to aspiration. In addition, the adverse effects of gastroesophageal and extraesophageal reflux on the integrity of the esophageal repair site can further complicate motility and create enduring problems through adolescence. This guideline attached provides information to inform our practice, increases our ability to speak in a more informed way with physicians and can help us advocate for our pediatric patients. I hope you enjoy it as much as I did.

Catherine

Cervical Auscultation in Pediatrics

Thought you might find these recent articles on cervical auscultation in pediatrics informative. The evidence base is in its infancy but these papers are by the well-respected group in Queensland, Australia. Both articles reflect the value of instrumental assessment of swallowing physiology along with limitations of CA.

The Use of Cervical Auscultation to Predict Oropharyngeal Aspiration in Children: A Randomized Controlled Trial

Aspirating and Nonaspirating Swallow Sounds in Children: A Pilot Study

One highlights descriptors for swallowing and breath sounds. Using CA, the presence of a glottal release sound along with normal breath sounds post-swallow are possible indicators of a non-aspirating swallow. Conversely, the presence of wet breathing and 1 or more of the following sounds: cough, wheeze, crackles, throat clearing, and stridor are indicative of an aspirating swallow, when compared to VFSS. Clinicians are encouraged to refer for further instrumental assessment of feeding/swallowing skills in the absence of these perceptual parameters and/or presence of abnormal respiratory sounds post-swallow. Further research comparing the acoustic swallowing sound profiles of normal children to children with dysphagia (who are aspirating) on a larger scale is required.

The other paper looks at use of CA in relationship to predicting aspiration. Although they found that using CA as an adjunct to the clinical feeding evaluation improves the sensitivity of predicting aspiration in children, it is not sensitive enough as a diagnostic tool in isolation.

I have always made it a practice to listen to normal newborns in the Newborn Nursery and infants I follow in NICU via CA, just to build my “scaffolding” if you will as to what breathing and swallowing sounds like under auscultation. If you have not, listen. I am intrigued by what I hear when I listen to infants via CA with both known and suspected airway and/or swallowing problems. We lack guidelines and training formats to yield objective data, but these articles add to our information base and advance the science.

I hope you enjoy them as much I did.

Catherine

Problem-Solving Cardiac Babies: Slow Flow vs Standard Nipple?

Problem-Solving Cardiac Babies: Slow Flow vs Standard Nipple?

I answered this question for Krisi Brackett’s blog and wanted to share it with all of you!

Question:

I’m a nurse in a pediatric cardiac ICU. There is a debate within our unit about whether slow flow nipples, or standard nipples are best for feeding our complex kids.  There is a belief among some of the staff that using a slow flow nipple makes the baby have to work harder to get the milk, thus tiring them out.  Most of the studies I found about slow flow nipples don’t directly address whether they cause the baby to “work harder”/expend more calories, and many of the studies that

I found are over 10 years old. I was wondering if you could advise me on what is the current, evidence based best practice.

Answer:

Many preterm infants in the NICU and the vast majority of our infants in pediatric cardiac intensive care have a baseline increase in WOB and often intermittent if not frequent tachypnea related to their cardiac pathology. Clearly our HLHS infants are among the most fragile, but not unlike many of our NICU infants with CLD and typical cardiac infants, it is their baseline respiratory work that creates both endurance and safety concerns during PO feeding (Jadcherla, 2009). Our cardiac infants who are also former preterms have then an added co-morbidity that typically increases cardio-respiratory workload.

In addition, any cardiac surgery that involves the aortic arch (reconstruction, dissection nearby, the ductus arteriosus or L pulmonary artery; S/P Norwood procedure) presents a high risk for post-surgical LVCP (Averin et al, 2012) This then can add another level of concern for safety during PO feeding.

The aerobic demands of feeding superimposed on a baseline of increased cardiorespiratory work serve to increase the risk for aspiration in the pediatric cardiac.
Yet there is pressure sometimes on professional caregivers to “get our cardiac infants to eat”, with a well-intentioned goal of getting them home. Indeed, well-intentioned strategies, which are volume-driven, may include increasing the flow rate to empty the bottle, which can cause the infant to “fight the flow” to breathe. While medium and high flow nipples help to “empty the bottle”, there is no evidence that increasing the flow facilitates a safe swallow or promotes cardio-respiratory stability.

A faster flow rate can result in both physiologic stress and negative feeding behaviors for the infant, who may struggle to breathe when swallowing and breathing compete. It can lead to learned feeding refusals to feed and long-term feeding aversions.  How often we observe feeding refusals and aversions in cardiac infants. This indeed may be a direct result of struggling to feed, given the inherent aerobic demands of feeding. Respiratory fatigue then sets in and compounds the negative experience.  In addition, unfortunately, a well-intentioned caregiver may steer the infant back to sucking and ask him to continue, when he has disengaged. The risk then to aspirate increases.
Clearly our cardiac infants require instead an “infant-guided” approach to feeding, which optimizes respiratory stability, swallowing safety and positive learning experiences for the infant. This supports our long-term goal of good growth with a lifelong joy in eating.
There has been minimal research regarding flow rate and cardiac infants per se. Much of our understanding of flow rate and its impact on both intake and cardio-respiratory workload comes from research regarding preterm infants, who by their nature, typically have respiratory co-morbidities.

Offering a flow rate that is manageable promotes what Goldfield (2007) calls “islands of stability” for breathing and avoids the need for an urgent breath. The need for an urgent breath can be due to sucking too fast and then “running out of air”, which can in turn lead to desaturation, apnea, bradycardia and a cascade of physiologic decompensation; swallowing and its integrity will “defer” if you will, to breathing, and result in movement of the bolus into/toward the airway with that breath, leading to either symptomatic or silent aspiration.  A flow which is not manageable inhibits “windows of opportunity” (Goldfield et al, 2006) to breathe, and thus the infant has to fight the flow” to breathe. Sucking, swallowing and breathing are complex processes even when considered separately. When an infant is fed, these processes must act together, working smoothly and efficiently, with highly accurate timing and coordination, to result in safe and efficient feeding. When both breathing frequency and depth are not optimally supported because too much time is spent in swallowing a larger volume of fluid delivered by a faster flowing nipple, ventilation is adversely affected. Al-Sayed and colleagues (1994) showed that slowing the rate of milk flow reduced ventilatory compromise. They reported that in term infants, taking more with a faster flow was at the cost of ventilation. An increased rate of consumption typical with a faster flow required an increased metabolic rate and increased swallowing frequency, which reduced ventilation. There work suggests that any feeding strategy that maintains intake with reduced frequency of swallowing (such as with a slow flow nipple) is likely to be ventilatory sparing. This is a critical component for our cardiac infants and can avoid the onset of respiratory fatigue and its attendant sequelae

A recent article by Pados and colleagues (2016) looks at effects of milk flow on the physiologic and behavioral responses to feeding in infants with HLHS (Hypoplastic Left Heart Syndrome). They remind us that feeding is a physiologically stressful event due to the need to coordinate suck-swallow-breathe and maintain adequate oxygenation during those aerobic demands. From their baseline, which often includes increased WOB and intermittent tachypnea, our cardiac infants have limited tolerance for further aerobic “work” that adversely affects ventilation. During frequent swallows, there is a repeated and prolonged disruption in ventilation during the time the airway is closed for swallowing. This may result in considerable physiologic distress for the cardiac baby with limited respiratory reserves, and may lead to disengagement, apnea, bradycardia and inadvertent bolus mis-direction leading to aspiration. A slower flow rate may assist the cardiac infant with maintaining baseline respiratory reserves and timing of the dynamic adjustments of airway opening and closing that surround the actual swallow. In their study, Pados et al observed physiologic and behavioral responses to a standard flow (Dr. Brown’s level 2) and a slow flow (Dr. Brown’s preemie). Results included the finding that the slower flow allowed the infant to maintain heart rate closest to baseline, and indeed a lower heart rate overall compared to the standard flow rate, suggesting the slow flow feeding was less physiologically stressful. Respiratory rate was significantly higher during slow flow feedings and change from baseline to feeding was greatest for the standard flow feedings. They suggest that the higher respiratory rate during slow flow feedings may be interpreted as being an indicator that slow flow feedings are more supportive, as the infant is able to breathe more often and more readily during feeding. Yet the infant’s average respiratory rate of 72 across all (both standard and slow flow) feedings is still worrisome. Given that integrating a pharyngeal swallow, which takes an average of one second, creates concern for inherent risk for airway protection, despite the flow rate offered. Because the study infant experienced adverse events with both flow rates, it reminds us that safe feeding for our cardiac infants is about much more than just a manageable flow rate. It takes understanding the physiology of infant swallowing, considering pertinent research that considers flow rate and physiologic stability, and then learning from the “communication” of our cardiac infants when they feed with a slow flow nipple and we provide co-regulated pacing and resting – how much calmer they look, how less excessive their WOB is, and how their volumes actually do increase (Shaker, 2013a).

Lau et al (1997, 2000) hypothesized in her study that preterm infants would feed more if the flow rate was unrestricted versus if milk flow occurred only when the infant was sucking. This was a great way to look at the difference in intake when flow was faster (less controllable) compared to a slower, more manageable “infant-guided” flow rate. Oral feeding performance was documented when milk delivery was “unrestricted”, as routinely administered in nurseries, versus “restricted” when milk flow occurred only when the infant was sucking. Proficiency (% volume transferred during first 5 minutes of a feeding/total volume ordered), efficiency (volume transferred per unit time) and overall transfer (% volume transferred) were calculated. Restricted flow rate enhanced all three parameters. With a slower flow rate, infants were less likely to have to struggle with milk flow when they need to pause to breathe. This is what Goldfield postulates is essential to coordinated swallowing with breathing. The infant’s ability to take more with a slower flow rate reflects how a manageable flow rate enhances intake. It promotes the essential respiratory reserves to “go the distance” like marathon runners, as it allows for frequent and deep breaths.
Although increasing the flow rate is considered a way to help a preterm infant ingest more volume, flow rate is actually negatively correlated with feeding efficiency. Using a randomized controlled trial, Chang and colleagues (2007) evaluated the effects of a crosscut nipple (faster flow) versus a single-hole nipple (slower flow rate) on feeding ability and stability. Preterm infants were more physiologically stable and used a more efficient sucking pattern with the slower flowing nipple than with the crosscut nipple. The infants ingested a greater volume with the slower flowing nipple as well (Chang et al, 2007).

It is important to note that any nipple ring tightened excessively will create a vacuum that does indeed require “more work” and could in effect create an artifact of fatigue. I always suggest we just “hand turn” the nipple ring to close it, but not “man turn it”. I find too tight a nipple ring is often an adverse factor when slow flow nipples are used, which does then indeed create too much “work”. But this is not flow-related, its caregiver related.
Parents of our cardiac infants need help learning to “listen” to their infant during feeding, responding sensitively to the infant’s communication during feeding about how the infant is tolerating the feeding, and titrating interventions accordingly (Shaker 2013a, Thoyre et al, 2013; Thoyre et al, 2012).  If parents are focused on volume that can then have adverse effects on the parent-infant relationship, which is established early on through co-regulated and communicative feeding interactions that build trust Shaker 2013b). This is not to say that volume is not one of the important measures of feeding integrity required for discharge. However, volume must be viewed in the context of the infant’s developmental strivings, and as the by- product of a quality feeding, in which the infant’s cues of both engagement and disengagement, despite the volume, are respected and honored (Shaker 2013a). When this happens, there is physiologic stability during feeding, and both underlying good nutrition and growth are optimized.

In both our large Level III NICU and our large cardiac surgical unit at Florida Hospital for Children in Orlando, we have started to make wonderful strides with staff and family in changing the misconception regarding slow flow nipples” making babies “work harder”. The improved feeding outcomes, more pleasant infant-guided feedings, and happier families speak for themselves.

I hope this is helpful! Thank you for asking how to best support successful feeding for our little ones in PCVICU.

Catherine
Catherine S. Shaker, MS/CCC-SLP, BCS-S
Neonatal/Pediatric Speech-Language Pathologist
Florida Hospital for Children – Orlando
http://www.Shaker4SwallowingandFeeding.com

Selected references:
Al-Sayed, L., Schrank, W., and Thach, B. (1997) Ventilatory sparing strategies and swallowing pattern during bottle feeding in human infants. Journal of Applied Physiology, 77:78-83.

Averin, K., Uzark, K., Beekman, R. H., Willging, J. P., Pratt, J., & Manning, P. B. (2012). Postoperative assessment of laryngopharyngeal dysfunction in neonates after Norwood operation. The Annals of thoracic surgery, 94(4), 1257-1261.

Chang, Y.J., Lin, C.P., Lin, Y.J. et al. (2007) Effects of single-hole and cross-cut nipple units on feeding efficiency and physiological parameters in premature infants. Journal of Nursing Research,15(3): 215-223.

Goldfield, E.C. (2007) A dynamic systems approach to infant oral feeding and dysphagia. Ecological Psychology, 19(1): 21-48.

Goldfield, E.C., Richardson, M.J. et al. (2006) Coordination of sucking, swallowing and breathing and oxygen saturation during early infant breast feeding and bottle feeding. Pediatric Research, 60(4) 450-455.

Jadcherla, S.R. et al (2009) Feeding abilities in neonates with congenital heart disease:  a retrospective study. Journal of Perinatology (29), 112-118.

Lau, C., & Schanler, R. J. (2000). Oral feeding in premature infants: advantage of a self‐paced milk flow. Acta Paediatrica, 89(4), 453-459.

Lau, C., Sheena, H.R., Shulman, R.J. and Schanler, R.J. (1997) Oral feeding in low birth weight infants. JPediatr, 130(4):561-9.

Pados, B.F, Thoyre, S.M. et al (2016). Effects of milk flow on the physiological and behavioural responses to feeding in an infant with hypoplastic left heart syndrome. Cardiology in the Young, 1-15.

Shaker, C.S. (2013a) Cue-based feeding in the NICU: Using the infant’s communication as a guide. Neonatal Network 32(6): 404-408.

Shaker, C.S. (2013b) Cue-Based Co-regulated Feeding in the NICU: Supporting Parents in Learning to Feed Their Preterm Infant. Newborn and Infant Nursing Reviews, 13 (1): 51-55

Thoyre, S., Park, J., Pados, B., & Hubbard, C. (2013). Developing a co-regulated, cue-based feeding practice: The critical role of assessment and reflection. Journal of Neonatal Nursing.

Thoyre, S. M., Holditch-Davis, D., Schwartz, T. A., Roman, C. R. M., & Nix, W. (2012). Coregulated approach to feeding preterm infants with lung disease: Effects during feeding. Nursing Research, 61(4), 242-251.

Problem-Solving Late Preterm Weaning Breast to Bottle

Question:

The parent of a client approached me about a three-month baby refusing bottle feeds. Baby had some issues at birth with feeding and was in NICU for one week due to respiratory insufficiency, born at 36 weeks. Since 37 weeks, baby has been exclusively breastfed with no issues and appropriate weight gain. Does anyone have any techniques to facilitate transition to bottle with pumped breast milk? Any bottles that you have found to work better than others

Answer:

There is likely a myriad of factors that likely are combining to result in this former late preterm’s difficulty transitioning from breast to bottle.

Because she is a former late preterm, it opens up so many possible interacting etiologies that need to be peeled apart and looked at in dynamic relationship with each other. Why she is “refusing” bottle feedings is the key to how we intervene.

Most late preterms born at 36 weeks are in the newborn nursery. The fact that she required neonatal intensive care and had respiratory insufficiency suggests that respiratory co-morbidities were significant. There may have been other co-morbdities, which are not uncommon for late preterms, but we do not know that.

The typical approaches for a healthy term infant with the same challenges cannot be applied to a former late preterm. While she is now 3 months, she is a little over 2 months adjusted age, and that difference is essential to consider, as it provides the context in which we interpret her behaviors. Born 3 weeks early, her sensory-motor experiences early-on were different. Her postural integrity may still be lagging somewhat and may predispose her to more readily breastfeed because less adaptations are required posturally at breast. Because the unique and exquisite physiology of breastfeeding creates ” islands of stability” for breathing for preterms, her preferences for breastfeeding may indeed be physiologic – i.e., at breast she can control the flow to create “windows of opportunity” to integrate breathing with sucking. That isn’t possible with most mad-made nipples. Man-made nipples not only often flow faster, but the infant cannot control the flow from a man-made nipple. It flows based on what nipple the caregiver chooses and the infant can only “respond” to what flow has been selected. The flowrate differences may be part of the picture.

Based on that, I would likely not consider alternative feeding procedure that require this former late preterm to manage a less controllable flow from a Medella Soft Feeder, syringe, cup, straws. While that may be supportive in a former healthy term infant, it may create more struggle for this infant given her history.

I would suggest swaddled sidelying, a slow flow nipple (perhaps Dr. Brown’s preemie flow), ad infant-guided co-regulated pacing to support the kind of flow rate control that this infant has learned and appreciated at the breast. Always offer the nipple via her rooting response, as she is used to rooting actively with breastfeeding, versus” placing the nipple” in her mouth or” putting it in her mouth”. I would also avoid any tendency to prod with the bottle, as she is not prodded at breast. The less adaptability required when she goes from breast to bottle, and the more physiologic stability we create by supporting breathing, the more likely we will be to see progress. We also want to foster a positive feeding experience versus focusing on how much the infant takes, i.e., emptying the bottle, which may unfortunately come into play as bottle feeding is offered. Supporting maintaining the mother-infant relationship will be essential.

I hope this is helpful.

Catherine

Problem-Solving Poor Feeding Post Jejunal Atresia Repair

Question:

I was just consulted on an infant with a history of jejunal atresia with repair. He was born at 33 weeks GA and is now 41 weeks. He reportedly has consumed 50-90mL adlib on demand per physician of breast milk via bottle. Mother reports feeding every 3-4 hours. The OT that has been working with this little one has incorporated use of a slow flow nipple and external pacing which reportedly assists with coordination and reduces frequency of adverse events but the infant continues to demonstrate physiological instability. During some feedings he demonstrates coughing within a few minutes of onset of feeding. Mother reports that any change or disruption of coordination results in change of physiological stability. These episodes occur during as well as after feeding in which he is demonstrating coughing, occasional color change, desaturation, and bradycardia (both during and after feeds). The RN and mother indicate that on a couple of occasions at night, he has required blow-by. No significant spit ups noted, however, RN reports that on one occasion, small amount observed on external nares. They have reportedly attempted various nipples, positioning, and have also tried breast feeding (which resulted in a significant episode). Reflux strategies/precautions have already been implemented but without much improvement.

Reduced coordination is an issue, however, also suspect EER as piece to this. I am trying to determine differential and plan on completing MBS to get a better idea of swallow physiology. Does anyone have any experience with children with this particular diagnosis or thoughts on this case?

Answer:

The jejunal atresia repair in and of itself does not explain the decompensation you report. All we know about history is the infant is a preterm born at 33 weeks. Are there any other co-morbidities such as Neuro or respiratory? Post-op he may have some lower branch of the Vagus-driven atypical sensory GI responses but that would not typically lead to the clinical behaviors you describe. What is his WOB like at baseline and how does it vary with the aerobic demands of feeding? Does the infant otherwise present as a typical former 33 weaker at his current adjusted age? Can the events appear to be averted by co-regulated pacing that is more strict with an Ultra-preemie nipple? Without knowing the answers to these questions, I would be asking to complete an instrumental assessment to objectify swallowing physiology and determine if there is normal physiology which is being altered under certain conditions or if physiology is impaired, what the etiology is (or etiologies are) that lead to bolus mid-direction. The clinical behaviors you describe in this neonate are ones I typically see associated with aspiration. To continue to feed the infant despite volumes ingested given these adverse overt events does not support neuroprotection and may lead to feeding refusals.

I do not think the thermal stimulation suggested would be advisable as we have at this point no known etiology for the events observed. Every intervention should be thoughtfully matched with clinical behaviors and etiology, and used within an evidence-based framework. At this juncture in your differential, the data don’t lead us in that direction.

Of course EER (Extra Esophageal Reflux) may indeed be part of what is happening but we cannot assume that. It is possible that EER events are co-occurring during swallowing, which could result in bolus mis-direction if the infant’s swallowing physiology is indeed altered in the moment by the EER. It is possible the decompensation observed during PO feeding is due solely to EER events (bolus mis-direction from below) that is occurring both during feeding and at non-feeding times. Hopefully an incidental finding of EER would then be captured by the radiologist during the swallow study. Alternatively, the events of decompensation observed clinically may indeed reflect a true dysphagia –but if so, the etiology (or etiologies) can then be determined during the swallow study. An instrumental assessment will give us an impression of the possibly multiple factors impacting the dynamic swallow pathway. This then can inform the differential and then guide both the SLP and the entire team in terms of next steps for intervention as well as further diagnostic workup.

I hope this is helpful.

Catherine

Shaker Seminars at Colorado Children’s Hospital

Just returned from a wonderful week in Denver teaching at Colorado Children’s Hospital. What an amazing facility with a world class team. No wonder they continue to be in the Top Ten Children’s Hospitals in the country.

Those attending came from across the US and Canada. It is always such an opportunity for all of us to learn, when we can network with such a large group that reflects perspectives from many teams and cities.

A few pictures below of me with my colleague, fellow instructor and friend, Theresa Gager, at the entrance by their logo, on our arrival.

Denver was beautiful, especially the mountains and skies. Just being out side was refreshing, especially for me coming from hot humid Orlando !

We also could not resist this iron sculpture of rabbits with long ears so here we are having fun. Life is so short we have to have fun along the way at every opportunity.

Hope our paths cross down the road.

Catherine

eColorado bunnies hosp

Problem-Solving Swallowing after Supraglottoplasty

Question from Jennifer SLP: I’m curious to know your thoughts and/or procedures for feeding evals post supraglottoplasty? Do you always do an MBS? Only when indicated? How soon after supraglottoplasty do you do an MBSS (if you do one)? What are your treatment plans/outpatient recommendations if they are not safe to PO? Thank you!

Answer:
It really depends on the infant’s/child’s history and co-morbidities, as of course each has a unique presentation and requires an individualized differential.

In general, when co-morbidities require a supraglottoplasty is recommended, there is typically an associated adverse effect on swallowing physiology being appreciated pre-op. The post-op swallowing physiology, however, is not always improved. It is sometimes more problematic after the supraglottoplasty, which can actually worsen airway protection and further alter physiology.

The related co-morbidities (e.g., prematurity, sensory-motor issues etc.) and altered pre-op system function (GI, respiratory, neuro etc.) will further affect post-op results.

Perhaps work with the ENT/surgeon/attending as to timing of small PO trial with ST to get the infant/child ready for radiology and then objectively determine any adverse effects along the swallow pathway present post-op, or any impairment/alteration that was appreciated pre-op and persists post-op. Sometimes surgeons assume the supraglottoplasty will “fix” swallowing and that may not be the case, in my experience.

Then here is the updated information from Jennifer, SLP:
This has been really helpful. I’ve been working with the ENT, he doesn’t have an idea of when exactly she will be “healed” from her procedure, but we both agree she may need more time. Here is the case in full:

Ex 36 weeker, brought to hospital at 1 week old for stridor. Found to have severe laryngomalacia – obstructive with the arytenoids collapsing in the airway. Made NPO because (Thank you Catherine – I’ve been to your course!) she couldn’t breathe – so she couldn’t eat. Trialed taste trials, but continued to have increased work of breathing and desats were significant. Had a supraglottalplasty on 9/5/16. Trailed taste trials again on 9/8/16 with little to no stridor but multiple swallows (x5) with each bolus and increased congestion with trials. Continued with taste trials for a week. Medical team pushed for a MBSS, they were worried we were being too conservative as a baby post supraglottalplasty may still continue to have noisy feeding. In the MBSS the baby aspirated on thin and nectar consistencies, even using a preemie nipple, 1-suck pacing, sidelying, 1/2 filled nipple. She had really poor swallow function observed in the MBSS – overall weak sluggish movements, multiple swallows, aspiration on primary swallows and residuals. We are continuing to trial tastes with her conservatively – but no progress thus far. She is now term, and the ENT believes she probably had a poor swallow and once they lasered away the tissue covering her airway, her swallow dysfunction was more obvious. She has no other known co-morbidities.

I’m just wondering when we need to make decisions about her long-term plan? Do we give her more time? Also, has anyone worked with a baby like this and have any successful treatment plans? Thank you so much.

My response:
Thanks for more information. Are there other less obvious co-morbidities, as this sounds atypical for a late preterm (36 weeks GA) with an “isolated” laryngomalacia. What was the etiology (or etiologies) for the aspiration? Were the events silent? Was there any other form of bolus mis-direction? We know she otherwise has no known co-morbdities, but is she presenting normally (neuro, postural tone/movement patterns, oral-pharyngeal reflexes, saliva swallows)? I suspect not, based on what you have told us.

I agree with the ENT that the infant probably had swallowing dysfunction pre-op and once they lasered away the tissue covering her airway, I took away “protection for the airway” and her primary swallowing dysfunction “declared itself”. EER/LPR may be playing a part as it is commonly associated with both LM and silent aspiration according to the research. Wonder if ENT saw evidence of EER/LPR when he scoped her? Is she being treated for EER/LPR? Could there be aspiration both from below and above that might be contributing?

Since this presentation is atypical for a late preterm with LM –are they doing a further work up to help elucidate the bigger picture likely affecting the integrity of her swallow? It is perhaps a separate issue from the original need for a supraglottoplasty and that may help to guide prognosis and plan.

Given the nature of the swallowing impairment you describe, and the interventions so thoughtfully trialed in radiology, I suspect this is not going to resolve in the near future. Keep us posted on the results of a further workup as that should help decision-making. Continued pacifier dips and positive oral-sensory-motor input will be important to keep her system primed for return to PO feeding, as co-morbidities and safety permit.

Erika Lee, one of my SLP colleagues from Oklahoma, reminds us that “the purpose of supraglottoplasty is to improve the infant’s breathing; and if that is accomplished, then feeding usually gets better. The supraglottoplasty usually delivers benefits immediately; but then the effects get better over time as the surgery site heals (especially if a laser was used). Surgeons typically assess the entire airway and palpate the interarytenoid space to assure that there is no laryngeal cleft.” The just published manuscript is attached.

I hope this is helpful.

Please click below for the manuscript…

Supraglottoplasty Otolaryngol Head Neck Surg 2011 (818-22)

Cue-Based Feeding Seminar

An NICU SLP asked me about resources for training neonatal nurses on feeding stress cues and stop signs. An SLP I know from Minnesota, Wendy, suggested the SLP take a look at the EFS. I responded to the post and share it with you here since it will let you know what you will hear about at our October 15-16, 2016 EFS training seminar in San Antonio TX this year!

Hi Wendy,
Thank you for your kind comments about The Early Feeding Skills Assessment Tool (EFS). It has evolved over the years as a wonderful guide to cue-based feeding in the NICU. I especially am proud of it because it looks at feeding from the infant’s perspective and is grounded in physiology. It reflects how I conceptualize feeding in the NICU, which I refer to as “infant-guided”, i.e., a dynamic approach based on contingent co-regulation between infant and caregiver. That maybe a parent/family member, a nurse, or a therapist.

A little background for list serve readers. Both working in NICUs at the time, Dr. Suzanne Thoyre and I first collaborated in the early 1980s about infant feeding in the NICU and how to describe infant’s feeding skills. When Dr. Thoyre, as a part of her NICU research, wanted to teach mothers how to describe their infant’s feeding problems during phone follow-up post-NICU discharge, the EFS began to take shape. After using the EFS for years and working with each other to continue to improve it, we published it and began to share it with others in 2005. With multiple revisions, as research and our learning continues, it is now used in several NICUs across the US, both by nurses and SLPs as they assess infant feeding, and as Wendy mentioned, with families to help them understand their infant’s communication and physiology during feeding, using a common language with staff.

The EFS assesses the preterm infant’s ability to maintain physiologic stability during feeding, remain engaged in feeding, organize oral-motor function and coordinate sucking and swallowing with breathing. The EFS, by the nature of its design, considers not just oral-motor skills but rather, the whole infant, from posture, to physiology, to breathing, to state, to coordination, to swallowing, to oral-motor skills as well.

Beyond that, it focuses on the integration of these domains for function, all within a developmental care framework. It is unique in that it recognizes the value of understanding the infant’s adaptive responses to the feeding task, and how they are instructive to the caregiver.

The tool is also based on dynamic systems theory (that multiple systems synergistically affect each other during feeding) and these systems are assessed dynamically throughout an entire feeding, to arrive at a gestalt. Capturing variability across the entire feeding is a critical part of the analysis/integration of information. The items are designed to capture the variability in the infant’s learning of the foundational components of feeding skills, the continuum of that learning, and the emergence of skills; so it assesses whether component skills are not observed, are emerging, or are indeed consistently expressed. It is often used serially to capture developmental progress in feeding over time.

The EFS leads the caregiver, by the nature of how it is designed, to the interventions that naturally flow from the results of the assessment. It profiles interventions to support adaptive function during feeding and swallowing, and therefore interventions for safety.

The EFS is user friendly in that it is not focused on understanding and identifying only isolated oral-motor components but rather making sense of what all caregivers “see” every day when they feed preterm infants–the infant’s communication/cues during feeding. It provides a common language about feeding terminology (such as what do we mean by an infant is “pacing” himself, or what is “coordinated”, for example) to help all team members, including families, get on the same page, so conversations and report have common meaning.

We do require training on use of the tool (offered at least yearly) to assure implementation in keeping with its intended purpose and parameters. SLPs typically then go back and teach their own NICU staff with resources provided during the training. I am so glad the EFS has advanced infant-guided feeding in your NICU!

Please Click Link Below For More Details:

Cue Based Seminar 2016

Tube Fed Children: Management, Weaning and Emotional Considerations

Working with our infants and children who are tube fed can be challenging. This recent article by a well-respected interdisciplinary team highlights some key perspectives and current data that can inform your therapy practice. Hope you enjoy it as much as I did.

Caring for Tube Fed Children

Pediatric Feeding Problems from the Parents’ Perspective

Wanted to share this recent article that so well captures the importance of the family as the most important part of our therapy with their child. As the authors state: “A child and their family have a feeding problem; they experience this journey together. It is more inclusive to consider this issue in the context of the child’s natural environment with the people who are most familiar and invested. A shared conceptualization that families can relate to (without perceived stigma) and that providers could use to classify pediatric feeding problems would improve potential for early feeding assessment, referral, and for feeding intervention efficacy to last long term. “ Click on the link below to enjoy this wonderful article!

MCN Am J Matern Child Nurs 2016 Mar 23

Problem-Solving with Catherine

QUESTION: Hello! I work in a residential home with medically fragile infants. We currently have an 11 month old (7months adjusted). He is trach and vent dependent with many diagnosis’ due to prematurity including: pulmonary hypertension CLD, PIE

We are having many debates (speech/ nurses) on respiratory rates that are appropriate for feeding. Can anyone provide some guidelines that are based on research as the nurses are stating that his resting respiratory rate is in the 50’s therefore it is ok for his RR to be elevated during feedings… Help!!! I am on an island!!!

ANSWER: Given this was a 28 weeker based on his adjusted age, his longstanding respiratory co-morbidities from the NICU are most likely the biggest part of the picture still, even though now 7 months adjusted age. Did he indeed get the trach in NICU due to need for long-term ventilation, or were there any airway pathologies that might now preclude tolerance of an in-line PMV? When was the last time ENT saw him to assess airway integrity?
Often infants with a history like his may have multiple issues/co-morbidities that need to be considered regarding readiness to feed. I like to start with a recent airway assessment as I mentioned so you can discuss with the ENT his perspective on readiness to trial a PMV in line and to secure an order if team agrees. If his co-morbidities do not preclude a PMV trial, experience shows us that the inline valve can typically help wean vent settings in infants, and of course could also contribute to restoring subglottic pressure (for improved pressure gradients for swallowing – a key component of infant swallowing). It would also help him manage his secretions as he could then “feel”/sense the secretions. You don’t mention anything regarding his secretion management, which is a factor to consider, but I find it is often improved by a PMV if tolerated. Just feeling his secretions and then swallowing his secretions is a big learning curve for an infant like this and is a critical step along the way.
He has no taste and smell right now, which most likely he actually has never experienced, given that he most likely was vented and trached in the NICU. This is a big void for infants with his history. Being able to use his sensory system (taste, smell, touch/tactile) to “guide” the swallow will be critical for this infant whose oral-sensory-motor system has been altered for some time. Indeed, when he is truly ready (from multiple perspectives of readiness) to trial some tiny PO tastes (most likely of puree), my experience suggests the entire swallow pathway will be better supported via use of a PMV. Again if he tolerates a PMV, based on the original etiolog(ies) for the trach and current airway integrity. I always look to partner with ENT, Pulmonology and my RTs.
Regarding respiratory rate (RR), our RTs tell us that focusing on RR as a primary indicator is quiet limiting and does not take into account the infant as a whole, in particular both his current level of respiratory support (vent settings, Fi02 needs, ability to wean settings, trends over the last month or so, overall progression toward weaning, for example) and his work of breathing (WOB) both at rest and with activity. By WOB, I mean breathing effort – it is often a better overall indicator of physiologic stress than RR alone. WOB would include for example: nasal flaring/blanching, chin tugging, retractions (suprasternal, clavicular, pharyngeal, intercostal, substernal) – this increased respiratory effort, if present at baseline, suggests the “workload” required with breathing, even despite respiratory support, may indeed render the ability to organize breathing even with non-nutritive sucking precarious; the attendant “aerobic workload” is something he needs time to work through and learn to modulate with help during therapy. Being able to “feel” oral-pharyngeal airflow during non-nutritive sucking or oral play is in itself a step along the way to future PO.
Too often, well-intentioned caregivers who think PO feeding will be “fun” are not appreciating the complexity of the task with an altered airway, being hooked up to a vent, not being able to taste or smell (which they often don’t understand as sequelae from tracheostomy) and having a long history of altered oral-sensory-motor experiences, as well as other developmental concerns related to the need for a trach (i.e., gross and fine motor delays, altered postural control, especially in the head and neck, which can affect ability to feed), and other co-morbidities associated with being born so extremely preterm that can alter his overall developmental trajectory.
I know this response is much deeper than you expected, but so much to consider – RR is just the tip of the iceberg so to speak. You aren’t really on an island because we are all out here, each of us learning and at times struggling with similar issues, perhaps with similar patients or clinical questions. I actually like being in the “gray zone”, as I like to call it, where the answers are not clear but the questions often are. That is of course how we grow.
He is lucky to have you in his corner as you try to both protect him and offer him opportunities to grow and develop. I hope this gives you food for thought as you consider next steps. Your population of medically fragile infants is one of the most challenging.
Catherine

Problem-Solving with Catherine

Question:

I work with a 4-month old baby with lots of gastro issues on G-tube. He has had a nissen fundo surgery. Originally NPO. I gave mom strategies for oral motor but he has a great suck pattern and no visible oral motor issues. Also gave strategies for environmental modifications while feeding. He is now clear for only puree. I dont know if I should continue seeing him and how to proceed if I do. I have little experience with babies so any or all suggestions are welcome. Thank you!

Answer:

Sounds like a challenging patient. Since you have little experience with infants, this would be a great opportunity to partner with an SLP locally who has treated infants. We don’t know much about this infant except that he is 4 months old. To fully understand what is going on, we need to gather data, including his history, and combine that with what you are seeing to then be able to complete a differential. Some of the history you can gather from the parents, but I would also request records from the referring physician. We would want to know for example: was he born at term, or post-term or was he a preterm infant? What do we know about his birth history? Was he hospitalized in the NICU after birth? If so, how long was he there? What were his medical problems when he was there? Did he require oxygen? Has he had any other surgeries other than the G-Tube/Nissen? Are there still medical problems the doctor is sorting out or following? Why did they place a G-Tube? Did he have a swallow study and what did it tell us about his swallowing physiology? Is he otherwise developing normally for a 4 month old (posture, head control, UE and LE movements/control, swallowing saliva, getting hands to mouth on his own and appreciating that, accepting pacifier, visually alert/engaged and tracking, starting to make sounds?) It may be hard for you to fully assess these developmental parameters, as well as oral-motor integrity, and an extra set of eyes from another SLP will be both helpful and important.

From what you have told us it sounds like reflux is a part of the differential but that alone is unlikely to, though could possibly, lead to the need for G-Tube feedings. It is possible that, given he is to feed only purees, he may have shown alerted or impaired physiology with liquids. The altered or impaired physiology, if identified, should be correlated with an etiology in the swallow study report. Just knowing he “aspirated” won’t guide our differential and plan, as we would want to know what was the nature of the bolus misdirection (to the nasal airway? to the laryngeal airway?) and why the bolus mis-direction occurred, if it did; what they recommended for him at that time. That then drives a plan of care and suggests strategies to specifically address the problems identified.

While some infants do have oral-motor problems that contribute to the need for G-Tube feedings, there can be multiple co-morbdities, or problem areas that contribute. Knowing more about his medical history would help uncover or elucidate these factors, and they are critical to our assessment and treatment plan. They actually form the context in which we interpret our data, i.e., what we observe clinically and what the family tells us about what they see. You mention that he has no visible oral motor issues so then we want to look deeper and broader at other systems that underlie effective feeding, including GI, respiratory, postural, neuro, sensory, for example. Information about his history should guide you toward these suggested domains or away from them.

It is wonderful you reached out to this list serve, but as you can see his presentation and what to do with him is much more complex than can be fully addressed through the list serve. Perhaps use this an opportunity to learn and build your skills, and seek an SLP mentor to work alongside you and guide you.

Not sure if that is possible where you work, but I suspect not or you would have tried sought a colleague’s help.

It takes a clear objective sense of our own limitations and humility to think about not continuing to see a patient for whom we feel unprepared. I think as I read between the lines you are at that juncture and are to be commended for that tough call. Each of has been there and let’s hope we have all been as willing to ask questions and recognize the need to respectfully send the patient to another SLP, whose current skill set is a better match. Were this your infant with feeding/swallowing problems, you would want his therapist to make a decision that is in the infant’s best interest.

I hope that this has been helpful.

Catherine